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Evolution of a two-dimensional foam containing a single topological defect:
An experimental study

A. Abd el Kader and J. C. Earnshaw
The Department of Pure and Applied Physics, The Queen’s University of Belfast, Belfast BT7 1NN, Northern Ireland

~Received 21 April 1997!

The evolution of disorder in a two-dimensional foam containing a single topological defect, a large bubble
with more than six nearest neighbors, has been studied experimentally. The disorder initially grows, but those
bubbles comprising the area of disorder around the central large bubble reach a stationary state in which the
distribution of the coordination numbers of the bubbles and the average area per bubble are constant. This
affords qualitative support to recent simulations of similar situations in two-dimensional froths; quantitative
differences may arise from the wetness of the present foams.@S1063-651X~97!05209-4#

PACS number~s!: 82.70.Rr, 83.70.Hq
la
su

m
e
d
a

ta
in
c-
i-

rs
st

ol
n

c
f a
ec

le
an
he

re
es
ec
e
ing

th

red

fts
lass
lu-
les
en
ed
iga-
fi-
in
ation
e-

-
al

is
-
at-
ra-

nd
e,

d-
bles
ia-
not
o-

into

,
m-

les
by
ct-
nd

d it.
ci-
r or
es-
I. INTRODUCTION

Soap froths are examples of two-dimensional cellu
structures whose properties and evolution have been the
ject of much attention recently@1–3#. Relatively ordered
foam exhibits an initial transient in its evolution@3# that has
been interpreted in terms of the growth of disorder fro
individual topological defects. There is therefore some int
est in the study of such growing disorder. In a recent stu
Levitan investigated the evolution of an isolated defect in
otherwise ideal hexagonal froth@4#, concentrating on the
cluster of disordered bubbles around the initial defect~the set
of bubbles having at least one nonhexagonal neighbor!. His
results challenged the common wisdom that the scaling s
dynamics do not depend on the initial condition, suggest
as they did that the long-time topological distribution fun
tion, while of stable form, differed from that for generic in
tial conditions @random two-dimensional~2D! froth#. This
work excited considerable interest and some controve
@5,6#, but subsequent computer simulations have sugge
that more conventional ideas are more likely correct@7–10#.

While there have been experimental studies of the ev
tion of 2D froths that are initially to a greater or lesser exte
disordered@3,11# as well as analogous cellular systems@1#,
we are unaware of any such studies addressing the spe
point at issue in these recent simulations: the behavior o
otherwise ideal 2D system containing one isolated def
The present paper reports such an experimental study
perfectly sixfold coordinated 2D foam containing a sing
topological defect. Various types of defect are possible
have been studied in the simulations mentioned above. T
include a bound pair of dislocations, formed by performing
singleT1 process at a point within the ideal network@4,8#, or
a single bubble large enough to have more than six nea
neighbors@7,8#. However, the evolution of the system do
not seem to depend critically on the nature of the def
involved @8#. For our experiments we have chosen to us
single bubble that is significantly larger than those form
the body of the foam.

II. EXPERIMENTAL METHODS

The simulations discussed above concern dry 2D fro
While it is possible to make 2D froth that is nearly dry@11#,
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it appears essentially impossible to create perfectly orde
froth. We have adapted Bragg’s bubble raft@12# to permit
the formation of perfectly ordered 2D foam.

Fortes et al. @13# have demonstrated that bubble ra
trapped between the surface of a soap solution and a g
cover plate endure essentially indefinitely, temporal evo
tion being restricted to that due to coarsening of the bubb
driven by differences in Laplace over-pressure betwe
bubbles of different radii, as for the simulations summariz
above. They use such constrained bubble rafts in invest
tions of the temporal evolution of 2D foams. It proves dif
cult to avoid polycrystallinity in such experiments, as gra
boundaries appear over extended areas, making the cre
of large perfect crystals extremely difficult. However, r
stricting the 2D foam to a hexagonal shape@Fig. 1~a!# helps
enforce the desired symmetry@14#. The glass cover is sup
ported just~1–3 mm! above the soap solution on a met
plate that contains a hexagonal hole~typically 6 cm on a
side!. The plate extends into the solution and the 2D foam
formed by bubbling N2 into the solution below this hexago
nal cell via a long hypodermic needle. The bubbles are
tracted to the wall of the cell and to each other by compa
tively long-ranged capillary forces@15#.

By systematically sweeping the tip of the needle to a
fro as the lines of bubbles form it is possible, with practic
to create within the hexagonal cell perfectly sixfol
coordinated lattices comprising several thousand bub
about 2 mm in diameter. While there must be minor var
tions in bubble diameter within a given lattice, these are
large enough to affect the regularity of packing to any n
ticeable degree. The introduction of one or more defects
such 2D foam endows it with a sufficiently long life@14# that
it is possible to follow the growth of disorder in the system
permitting experimental tests of the questions raised in co
puter simulations.

Topological defects, in this case single bigger bubb
having more than six nearest neighbors, are introduced
interrupting the process when the lattice is part made, inje
ing an isolated bubble of different size using a syringe a
hypodermic needle, and then completing the lattice aroun
During this process one or two dislocations may form ac
dentally. However, they can be moved towards each othe
towards the big bubble until they disappear, leaving an
3251 © 1997 The American Physical Society
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FIG. 1. Pictures of a typical evolving foam that contains an initial isolated larger bubble, constituting a topological defect.~a! The initial
2D foam as formed (t50). ~b!–~d! The central portions of the foam after~b! t525 h, ~c! t528 h, and~d! t532 h.
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sentially ideal hexagonal lattice including a single larg
bubble@Fig. 1~a!#.

Fortes@16# has pointed out that such large bubbles m
have a ‘‘dislocation character,’’ in that they have a nonva
ishing Burgers vector. Indeed, the example shown in Fig.
of this nature. We find no difference in the temporal evo
tion of topological defects having a dislocation character a
those that lack such a character. The data to be prese
below derive from examples of both.

The 2D foams produced as above are, of course, wet,
we may hope that their behavior may reflect at least som
the generic aspects of the evolution of 2D froth as revea
in the simulations@7,8#.

III. RESULTS AND DISCUSSION

We present data from a series of experiments with a h
agonal cell 6 cm on a side; the results appear to be inde
dent of system size, at least over a range of cell sizes fro
to 10 cm. A typical example of the evolution of a sing
defect in an otherwise regular hexagonal lattice is shown
Fig. 1. The initial cluster@Fig. 1~a!# grows as the disorde
increases around the initial defect due to coarsening. Es
tially no observable changes occur in the system for 12
h, about which time the first increase in disorder around
defect appears. The initial stage of the evolution is faster
larger central bubbles~the number of neighboring bubbles
greater than or equal to 12!, as might be expected from vo
Neumann’s law.

We follow Levitan@4# and Jianget al. @7# in studying the
evolution of a ‘‘cluster’’ defined as all bubbles having
least one neighbor that is not sixfold coordinated.~The alter-
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native definition, excluding the sixfold coordinated bubbl
at the cluster periphery@8#, leads to larger fluctuations in th
distribution of topological classes.! This cluster comprises
the large central bubble and a ‘‘boundary’’ of disorder
bubbles around it. In our experiments, unlike the simulatio
inevitable tiny differences in the size of the ‘‘ordered
bubbles in the body of the foam lead to coarsening of the
foam and hence the appearance of generalized disorde
different areas of the foam, over time scales of the orde
days@evident in Fig. 1~c!#. This limits the time over which
we can follow the evolution of the cluster, as eventually t
cluster grows into this coarsening-induced disorder@Fig.
1~d!#. All the data to be presented here relates to times be
this occurs.

We have investigated the evolution of certain statistics
the cluster, of the cluster boundary~the cluster minus the
large central bubble!, and of the central bubble. These in
clude the distribution of so-called topological classes~bubble
coordination numbers! and its second moment, as well as t
areas and numbers of bubbles involved.

In the simulations time (t) could be used as an indepe
dent variable@7,8#. However, in our experiment we follow
the time evolution of foams containing topological defec
that initially are of different size~quantified here by the num
ber of nearest neighbors, varying from 8 to 16!. These dif-
ferent central bubbles do not have the same rate of gro
with time, so that it is difficult to compare the different run
as a function of time, as is natural for the simulations. N
von Neumann’s law

dAn

dt
5k~n26!, ~1!
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56 3253EVOLUTION OF A TWO-DIMENSIONAL FOAM . . .
whereAn is the size of a bubble withn nearest neighbors an
k is a system-dependent constant, should apply, albeit
statistically for our wet foam. The evolution of the system
governed by that of the large bubble and it seems reason
to use the number of neighbors of that bubble at a given t
(nb) as the independent variable instead of time itself. We
not claim thatnb depends linearly ont, just that it provides a
measure of the temporal evolution of the system. In cer
cases it is more natural to use the number of bubbles in
disordered clusternc ~which was found in the simulations t
increase nearly linearly with time!.

Experimentally,nc andnb both grew with time. The two
quantities are related~Fig. 2!, supporting the conclusion o
the simulations@7# that the outward propagation of the di
order in the foam just follows the growth of the large bubb
This reflects the fact that the boundary is usually only so
two bubbles wide~Fig. 1!, as found in the simulations@7#.
While nc generally seems to be a smooth function ofnb ,
some points lie off this variation: towards the end of an e
periment, nc sometimes increases relative to the gene
trend of the dependence uponnb . It may be that this occurs
as the cluster approaches the regions of coarsening-ind
disorder, although we cannot presently confirm this. T
feature does not seem to perturb any of the data prese
below.

The tail of the topological distribution functionP(n) ex-
tended towards larger values ofn as time progressed, whil
the peak of the distribution stayed atn56 due to the defini-
tion of the cluster as including an outer ring of sixfol
coordinated bubbles with at least one neighbor withnÞ6.
Figure 3 shows typical topological distributions for tho
bubbles belonging to the boundary~i.e., omitting the datum
at nb , the number of neighbors of the large central bubb!.
The error bars on all these distributions are approxima
the same and for clarity are shown only for one case.

An unusual feature of these distributions is the signific
population atn53; in conventional 2D froths such bubble
disappear through theT2 process @1#. The threefold-
coordinated bubbles are small and are observed to lie aro
the central large bubble, adjacent to two more normal si
bubbles; examples are apparent in Figs. 1~b!–1~d!. The dif-

FIG. 2. Number of bubbles comprising the clusternc versus the
number of neighbors of the topological defectnb . Here and below
different symbols represent data from experiments on differ
foams containing single large bubbles of different size and he
different nb .
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ference from 2D froths clearly lies in the wetness of o
foams. The area of contact available for diffusive inte
change of N2 between the smallest bubbles and their neig
bors falls more rapidly for the present quasispherical bubb
than in the usual 2D froths, hindering the final stages
evolution leading to theT2 process. We should note anoth
complication of our wet foams: the Plateau borders betw
the bubbles lose their triangular shape, multiple bord
forming as threefold borders merge@17#. Such borders po-
tentially lead to some ambiguity concerning adjacency
bubbles, but in practice this can always be resolved un
biguously.

P(n) changes from its initial form~the boundary of the
cluster comprising only fivefold- or sixfold-coordinate
bubbles! as the cluster becomes more disordered. Howe
apart from the point atnb , P(n) quite rapidly reaches a
stationary form; within the uncertainties the distributio
shown in Fig. 3 fornb>24 (t.10 h! are indistinguishable.
Turning to quantitative measures, the second moment of
topological class distribution of the cluster (m2) grows
monotonically withnb @Fig. 4~a!#, reaching rather large val
ues. The experimental cutoff imposed as the cluster runs
coarsening-induced disorder in the initially ordered part
the foam prevents these diverging values ofm2 from reach-
ing the values attained in simulations@7,8#. However, the
continuing increase inm2 is essentially entirely due to th
increase ofnb , the coordination number of the central larg
bubble. The second moment of the boundarym28 , which ex-
cludes this value, appears to saturate at a value about 2@Fig.
4~b!#. Apparent fluctuations in the initial behavior ofm28 are
due to the different rates of growth for central bubbles h
ing different initial values ofnb . In general,m28 starts at a
very low value, about 0.2, and quite rapidly makes a tran
tion to the regime of apparent saturation, intermediate val
only occasionally being observed.

Thus P(n), omitting nb , and the corresponding secon
momentm28 become constant early in the evolution of th

t
e FIG. 3. Topological class distributions for one example of
evolving foam containing an isolated topological defect; values
the number of neighbors of the central bubble (nb) are shown in the
legend. The datum atnb ~corresponding to the large bubble! is
omitted. Apart from the distribution fort50 (s) the data for dif-
ferent times are indistinguishable.
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FIG. 5. Variation of the area of~a! the cluster (Ac) and ~b! the
boundary (A8) with nc as different foams evolve.

FIG. 4. ~a! Variation of m2, the second moment of the cluste
with nb as different foams evolve.~b! Evolution ofm28 , the second
moment of the boundary.
system, suggesting that the boundary of the cluster quite
idly reaches a scaling state. While this supports conclusi
drawn from simulations@7#, the weighted mean ofm28 fol-
lowing saturation, 1.960.1, is considerably higher than th
corresponding value from the simulations (0.7160.17).
However, comparable values ofm2 have been observed i
the initial transient behavior of initially relatively ordered 2
froths@3#. While its value does fluctuate somewhat,m28 in the
simulations@7# seems to grow slowly with time. The high
m28 data of Fig. 4~b! may be constant or may increase gen
as nb grows ~statistical tests fail to discriminate betwee
these possibilities!. Unfortunately, it will not be easy to pur
sue this variation to highernb to check this point because o
the problem of the coarsening-induced disorder elsewher
the foam discussed above. Such longer time studies wo
also be interesting regarding the question whether the pre
large values ofm28 are merely a transient phenomenon,
seen in studies of 2D froths@3#.

We turn now to the areas of the cluster, the cluster bou
ary, and the center bubble. The areas of the clusterAc and of
the cluster boundaryA8 increase roughly linearly with the
number of bubbles in the clusternc ~Fig. 5!, as might be
expected. However, the area of the central bubble (Ab) does
not behave as expected~Fig. 6!. It seems plausible that we
should expectAb}nb

2 , as the circumference of the growin
bubble can accommodate more neighboring bubbles. Ind
in the simulations it is found thatAb}t2, nb rising roughly

FIG. 6. Dependence of the area of the central bubble onnb as
the foam evolves.

FIG. 7. Variation of the normalized area per bubble in t
boundary as the foam evolves. After an initial decline, the d
appear to fluctuate about a stable value.
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56 3255EVOLUTION OF A TWO-DIMENSIONAL FOAM . . .
linearly with t @7,8,10#. The departure ofAb from the ex-
pectednb

2 dependence implies that the area of the neighb
ing bubbles falls with time~increasingnb): nb is larger than
one would anticipate for a givenAb . Indeed, the dependenc
of A8 uponnc @Fig. 5~b!# supports this suggestion. The a
erage area per bubble in the boundary (a8), when normalized
by that measured in an ordered region of the foam at
same age (a0), falls with time, but ultimately fluctuates
about a constant value fornb*20 ~Fig. 7!. This normalized
area per bubble includes the Plateau borders between
bubbles, which are not insignificant in our wet foam. In t
scaling state fornb.20 ~corresponding to the regime whe
m28 is constant! the average value ofa8/a0 is 0.7760.04.
While this is quite close to values found in simulatio
(0.8860.08 @7#!, we emphasize that our value neednot be
comparable: in the simulations it is the average area o
bubble in the boundary that is determined, whereas we m
sure the average area per bubble.

IV. CONCLUSION

The main purpose of this work was to investigate expe
mentally the evolution of a single defect in an isotropic he
r-

e

the

a
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agonal lattice for comparison with recent computer simu
tions @7,8#. Central bubbles with different numbers o
neighbors were studied. In general terms the results af
qualitative support for the conclusion from simulations th
the area of disorder that evolves around the initial def
~referred to above as the boundary! achieves a scaling state
This boundary comprises different bubbles at different tim
in it the distribution of topological classes reaches a stati
ary form having constant second momentm28 and the area pe
bubble becomes constant. Certain quantitative difference
detail between the present data and the simulation res
appear to originate in the wetness of the foam studied. F
ther simulations of the evolution of disorder around a sin
defect in an otherwise ordered foam incorporating differ
liquid fractions would be useful in pursuing these diffe
ences.
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