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Evolution of a two-dimensional foam containing a single topological defect:
An experimental study
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The evolution of disorder in a two-dimensional foam containing a single topological defect, a large bubble
with more than six nearest neighbors, has been studied experimentally. The disorder initially grows, but those
bubbles comprising the area of disorder around the central large bubble reach a stationary state in which the
distribution of the coordination numbers of the bubbles and the average area per bubble are constant. This
affords qualitative support to recent simulations of similar situations in two-dimensional froths; quantitative
differences may arise from the wetness of the present foE®i€63-651X%97)05209-4

PACS numbeps): 82.70.Rr, 83.70.Hq

[. INTRODUCTION it appears essentially impossible to create perfectly ordered
froth. We have adapted Bragg's bubble rgf®] to permit
Soap froths are examples of two-dimensional cellularthe formation of perfectly ordered 2D foam.

structures whose properties and evolution have been the sub- Fortes et al. [13] have demonstrated that bubble rafts
ject of much attention recentlyl-3]. Relatively ordered trapped between the surface of a soap solution and a glass
foam exhibits an initial transient in its evoluti¢B] that has  cover plate endure essentially indefinitely, temporal evolu-
been interpreted in terms of the growth of disorder fromtion being restricted to that due to coarsening of the bubbles
individual topological defects. There is therefore some interqriven by differences in Laplace over-pressure between
est in the study of such growing disorder. In a recent study, pples of different radii, as for the simulations summarized
Levitan mv_estlgated the evolution of an |solate_d defect in anypove. They use such constrained bubble rafts in investiga-
otherwise ideal hexagonal frot], concentrating on the jong of the temporal evolution of 2D foams. It proves diffi-
cluster of disordered bubbles around the initial defda set cult to avoid polycrystallinity in such experiments, as grain

of bubbles having at least one nqnhexagonal ne|ghu?hs boundaries appear over extended areas, making the creation
results_challenged the common W'S.O.Iom that_ Fhe scaling Stafsy large perfect crystals extremely difficult. However, re-
dynamlcs_do not depend on the |n|t|al_cond_|t|o_n, S.uggesun%tricting the 2D foam to a hexagonal shdjpég. 1(a)] helps

as they .d'd that the '0”9'“(“6 topological dlstrlbutlon fgn_c- enforce the desired symmetf§4]. The glass cover is sup-
tion, while of stable form, differed from that for generic ini- ported just(1—3 mm) above the soap solution on a metal
tial conditions[random two-dimensional2D) froth]. This late that contains a hexagonal hdtgpically 6 cm on a
work excited considerable interest and some controvers ide. The plate extends into the solution and the 2D foam is
[5.6], but subsequ_ent computer simulat_ions have suggester rmed by bubbling N into the solution below this hexago-
that more conventional ideas are more I|kely_ corfget1Q. nal cell via a long hypodermic needle. The bubbles are at-

_ While there have been experimental studies of the eVolug, o (4 the wall of the cell and to each other by compara-
tion of 2D froths that are initially to a greater or lesser extenttively long-ranged capillary forced 5]

disordered3,11] an well as arllna:ogpus %eallular'systtﬁm ... By systematically sweeping the tip of the needle to and
We are unaware of any such studies a .ressmg € spemfﬁpo as the lines of bubbles form it is possible, with practice,
point at issue in these recent simulations: the behavior of A create within the hexagonal cell perfectly sixfold-
otherwise ideal 2D system containing one isolated deeCtCOordinated lattices comprising several thousand bubbles
The present paper reports such an experimental study f bout 2 mm in diameter. While there must be minor varia-
perfectly sixfold coordinated 2D foam containing a single :

topological defect. Various types of defect are possible an(?ions in bubble diameter within a given lattice, these are not
have been studied in the simulations mentioned above. The arge enough to affect the regularity of packing to any no-

include a bound pair of dislocations, formed by performing a?ﬁeable degree. The introduction of one or more defects into
' such 2D foam endows it with a sufficiently long lif&4] that

it is possible to follow the growth of disorder in the system,

B%rmitting experimental tests of the questions raised in com-

Puter simulations.

Topological defects, in this case single bigger bubbles
aving more than six nearest neighbors, are introduced by
nterrupting the process when the lattice is part made, inject-
ing an isolated bubble of different size using a syringe and

Il. EXPERIMENTAL METHODS hyppdermic needle, and then completing the lattice around _it.
During this process one or two dislocations may form acci-

The simulations discussed above concern dry 2D frothdentally. However, they can be moved towards each other or

While it is possible to make 2D froth that is nearly ddl], = towards the big bubble until they disappear, leaving an es-

neighborg 7,8]. However, the evolution of the system does
not seem to depend critically on the nature of the defec
involved [8]. For our experiments we have chosen to use

single bubble that is significantly larger than those formingi
the body of the foam.
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FIG. 1. Pictures of a typical evolving foam that contains an initial isolated larger bubble, constituting a topologicak@efdw.initial
2D foam as formedtE0). (b)—(d) The central portions of the foam aftés) t=25 h,(c) t=28 h, and(d) t=32 h.

sentially ideal hexagonal lattice including a single largernative definition, excluding the sixfold coordinated bubbles
bubble[Fig. 1(@)]. at the cluster periphe8], leads to larger fluctuations in the
Fortes[16] has pointed out that such large bubbles maydistribution of topological classgsThis cluster comprises
have a “dislocation character,” in that they have a nonvan-the large central bubble and a “boundary” of disordered
ishing Burgers vector. Indeed, the example shown in Fig. 1 i®ubbles around it. In our experiments, unlike the simulations,
of this nature. We find no difference in the temporal evolu-inevitable tiny differences in the size of the “ordered”
tion of topological defects having a dislocation character andubbles in the body of the foam lead to coarsening of the 2D
those that lack such a character. The data to be presentémhm and hence the appearance of generalized disorder in
below derive from examples of both. different areas of the foam, over time scales of the order of
The 2D foams produced as above are, of course, wet, butays[evident in Fig. Ic)]. This limits the time over which
we may hope that their behavior may reflect at least some ofie can follow the evolution of the cluster, as eventually the
the generic aspects of the evolution of 2D froth as revealedluster grows into this coarsening-induced disorflEig.
in the simulationg7,8]. 1(d)]. All the data to be presented here relates to times before
this occurs.
We have investigated the evolution of certain statistics of
the cluster, of the cluster boundafthe cluster minus the
We present data from a series of experiments with a hextarge central bubble and of the central bubble. These in-
agonal cell 6 cm on a side; the results appear to be indepesiude the distribution of so-called topological clasémsbble
dent of system size, at least over a range of cell sizes from goordination numbeysand its second moment, as well as the
to 10 cm. A typical example of the evolution of a single areas and numbers of bubbles involved.
defect in an otherwise regular hexagonal lattice is shown in In the simulations timet{ could be used as an indepen-
Fig. 1. The initial clusteFig. 1(a)] grows as the disorder dent variable[7,8]. However, in our experiment we follow
increases around the initial defect due to coarsening. Essethe time evolution of foams containing topological defects
tially no observable changes occur in the system for 12—1%hat initially are of different siz¢quantified here by the num-
h, about which time the first increase in disorder around thder of nearest neighbors, varying from 8 to).18hese dif-
defect appears. The initial stage of the evolution is faster foferent central bubbles do not have the same rate of growth
larger central bubbleghe number of neighboring bubbles is with time, so that it is difficult to compare the different runs
greater than or equal to 1,2as might be expected from von as a function of time, as is natural for the simulations. Now

Ill. RESULTS AND DISCUSSION

Neumann'’s law. von Neumann’s law
We follow Levitan[4] and Jianget al.[7] in studying the
evolution of a “cluster” defined as all bubbles having at dﬁ:x(n—G) )

least one neighbor that is not sixfold coordinatékhe alter- dt
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FIG. 2. Number of bubbles comprising the clusterversus the
number of neighbors of the topological defegt. Here and below n
different symbols represent data from experiments on different

foams containing single large bubbles of different size and hence F!G. 3. Topological class distributions for one example of an
differentn,,. evolving foam containing an isolated topological defect; values of

the number of neighbors of the central bubbig)(are shown in the

. . . . legend. The datum at, (corresponding to the large bubples
whereA, is the size of a bubble with nearest neighbors and omitted. Apart from the distribution far=0 (O) the data for dif-

K is_ a system-dependent constant, sho_uld apply, albeit 0_”|bérent times are indistinguishable.
statistically for our wet foam. The evolution of the system is
governed by that of the large bubble and it seems reasonable o
to use the number of neighbors of that bubble at a given timérence from 2D froths clearly lies in the wetness of our
(np) as the independent variable instead of time itself. We dd0ams. The area of contact available for diffusive inter-
not claim thatn,, depends linearly ot just that it provides a  change of N between the smallest bubbles and their neigh-
measure of the temporal evolution of the system. In certai?rs falls more rapidly for the present quasispherical bubbles
cases it is more natural to use the number of bubbles in th&ian in the usual 2D froths, hindering the final stages of
disordered clusten, (which was found in the simulations to €volution leading to thd, process. We should note another
increase nearly linearly with time complication of our wet foams: the Plateau borders between
Experimentally,n, andn,, both grew with time. The two the bubbles lose their triangular shape, multiple borders
quantities are relate¢Fig. 2), supporting the conclusion of forming as threefold borders merg&7]. Such borders po-
the simulationg7] that the outward propagation of the dis- {entially lead to some ambiguity conceming adjacency of
order in the foam just follows the growth of the large bubble,Pubbles, but in practice this can always be resolved unam-
This reflects the fact that the boundary is usually only som&iguously. o
two bubbles wide(Fig. 1), as found in the simulation]. P(n) changes from its initial fornthe boundary of the
While n, generally seems to be a smooth functionngf, cluster comprising only fivefold- or sixfold-coordinated
some points lie off this variation: towards the end of an ex-Pubbles as the cluster becomes more disordered. However,
periment, n, sometimes increases relative to the generafPart from the point an,, P(n) quite rapidly reaches a
trend of the dependence upag. It may be that this occurs Stationary form; within the uncertainties the distributions
as the cluster approaches the regions of coarsening-induc€doWn in Fig. 3 fom,>24 (t>10 h are indistinguishable.
disorder, although we cannot presently confirm this. This!Urning to quantitative measures, the second moment of the
feature does not seem to perturb any of the data presentd@Pological class distribution of the clusten) grows
below. monotonically withn,, [Fig. 4(a)], reaching rather large val-
The tail of the topological distribution functioR(n) ex-  U€s: The_ experlmental_ cutoff |mpose(_j as the cluster runs into
tended towards larger values ofas time progressed, while coarsening-induced d|sordgr mlthe initially ordered part of
the peak of the distribution stayedrat 6 due to the defini- he foam prevents these diverging valuesugffrom reach-
tion of the cluster as including an outer ring of sixfold- NG the values attained in simulatiog,8]. However, the
coordinated bubbles with at least one neighbor with6. ~ Continuing increase i, is gssentlally entirely due to the
Figure 3 shows typical topological distributions for thosencrease ohy,, the coordination number of the cerjtral large
bubbles belonging to the boundafiye., omitting the datum bubble. The second moment of the boundagy, which ex-
atny, the number of neighbors of the large central bupble cludes this value, appears to saturate at a value abidtig2
The error bars on all these distributions are approximately(b)]. Apparent fluctuations in the initial behavior pf, are
the same and for clarity are shown only for one case. due to the different rates of growth for central bubbles hav-
An unusual feature of these distributions is the significaning different initial values ofn,. In general,u, starts at a
population an=3; in conventional 2D froths such bubbles very low value, about 0.2, and quite rapidly makes a transi-
disappear through theT, process[1]. The threefold- tion to the regime of apparent saturation, intermediate values
coordinated bubbles are small and are observed to lie arourmhly occasionally being observed.
the central large bubble, adjacent to two more normal sized Thus P(n), omitting n,, and the corresponding second
bubbles; examples are apparent in Fig&)41(d). The dif- momentu; become constant early in the evolution of the
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FIG. 6. Dependence of the area of the central bubblepas
the foam evolves.

system, suggesting that the boundary of the cluster quite rap-
idly reaches a scaling state. While this supports conclusions
drawn from simulationg7], the weighted mean of.;, fol-
lowing saturation, 1.20.1, is considerably higher than the
corresponding value from the simulations (QtAL17).
However, comparable values of, have been observed in
the initial transient behavior of initially relatively ordered 2D
froths[3]. While its value does fluctuate somewhaj, in the
simulations[7] seems to grow slowly with time. The high-
w5 data of Fig. 4b) may be constant or may increase gently
as n, grows (statistical tests fail to discriminate between
these possibilities Unfortunately, it will not be easy to pur-
sue this variation to higher, to check this point because of
the problem of the coarsening-induced disorder elsewhere in
the foam discussed above. Such longer time studies would
also be interesting regarding the question whether the present
large values ofu, are merely a transient phenomenon, as
seen in studies of 2D frotHS].

We turn now to the areas of the cluster, the cluster bound-
ary, and the center bubble. The areas of the clusteand of
the cluster boundary’ increase roughly linearly with the
number of bubbles in the cluster, (Fig. 5, as might be
expected. However, the area of the central bubBlg does
not behave as expectdfig. 6). It seems plausible that we
should expecAbocnﬁ, as the circumference of the growing
bubble can accommodate more neighboring bubbles. Indeed,
in the simulations it is found thaA,t2, n, rising roughly
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FIG. 7. Variation of the normalized area per bubble in the
boundary as the foam evolves. After an initial decline, the data
appear to fluctuate about a stable value.
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linearly with t [7,8,10. The departure of\, from the ex- agonal lattice for comparison with recent computer simula-
pectednﬁ dependence implies that the area of the neighbortions [7,8]. Central bubbles with different numbers of
ing bubbles falls with timdincreasingn,): n, is larger than  neighbors were studied. In general terms the results afford
one would anticipate for a gively, . Indeed, the dependence qualitative support for the conclusion from simulations that
of A" uponn, [Fig. 5b)] supports this suggestion. The av- the area of disorder that evolves around the initial defect
erage area per bubble in the boundaay)( when normalized (referred to above as the boundaachieves a scaling state.
by that measured in an ordered region of the foam at thdhis boundary comprises different bubbles at different times;
same age q;), falls with time, but ultimately fluctuates in it the distribution of topological classes reaches a station-
about a constant value foy,=20 (Fig. 7). This normalized ary form having constant second momeritand the area per
area per bubble includes the Plateau borders between thibble becomes constant. Certain quantitative differences of
bubbles, which are not insignificant in our wet foam. In thedetail between the present data and the simulation results
scaling state fon,>20 (corresponding to the regime where appear to originate in the wetness of the foam studied. Fur-
w5 is constant the average value od'/ay is 0.77-0.04.  ther simulations of the evolution of disorder around a single
While this is quite close to values found in simulations defect in an otherwise ordered foam incorporating different
(0.88+0.08[7]), we emphasize that our value neeot be  liquid fractions would be useful in pursuing these differ-
comparable: in the simulations it is the average area of &nces.

bubble in the boundary that is determined, whereas we mea-

sure the average area per bubble.

IV. CONCLUSION
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